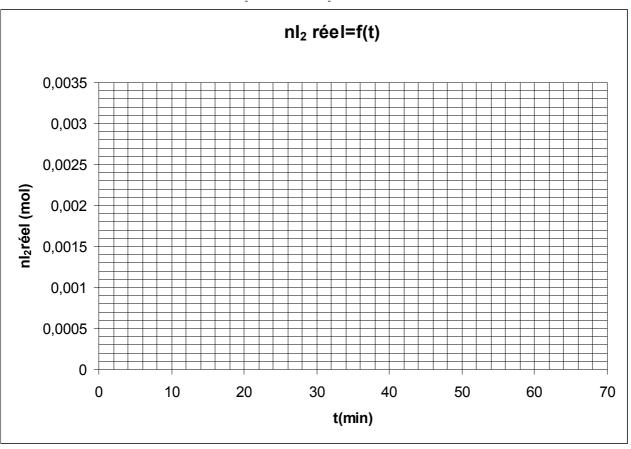
Suivi temporel d'une réaction. Vitesse de réaction Chapitre 3 de Chimie

Introduction : Quand un système chimique (ensemble des corps auxquels on s'intéresse) évolue au cours du temps, comment peut-on l'étudier ? Il est nécessaire pour cela de déterminer sa composition à chaque instant t.

a°) Réaction étudiée: \qquad \qquad \text{100 mL de K}^++I^- \text{\alpha} [I^-]=0,4 mol/l
100 mL de $2Na^++ S_2O_8^{2-}$ à $[S_2O_8^{2-}]=0.036$ mol/L
* on enclenche le chronomètre dés que l'on a mélangé les 2 solutions . on constate que la réaction est lente et qu'il se forme une légérère coloration brune liée à I ₂ . - couples rédox mis en jeu :
b°) Evolution du système: A chaque instant t, il disparaît des ions
c°) Réaction de titrage :
Rappel: titrer ou doser une espèce c'est déterminer sa concentration (ou son nombre de moles). Le réactif titré est celui dont on cherche la concentration. Le réactif titrant est celui qui est dans la burette (dont on connaît la concentration)
* pour une date t : thiosulfate de sodium (2Na++S ₂ O ₃ ²⁻) à 0,02 mol/L (C=0,02 mol/L)
10 mL (Vo=10 mL) du mélange réactionnel prélevé à la date t barreau aimanté
agitateur magnétique
Le réactif titré est et le réactif titrant est $S_2O_3^{2-}$. Les couples mis en jeu sont I_2/I^- et $S_4O_6^{2-}/S_2O_3^{2-}$ A l'équivalence la couleur brune du I_2 a disparu : tout le I_2 présent dans le bécher a été dosé par $S_2O_3^{2-}$. A l'équivalence I_2 of $S_2O_3^{2-}$ ont été introduit dans
* Pour relier n_{I_2} présent dans le prélèvement avec $V_{\text{eq }S_2O_3^{2-}}$, dresser un tableau d'avancement de la réaction de dosage.

conclusion : la quantité de matière en diiode présente dans la réaction étudiée à la date t est reliée au volume équivalent (volume de réactif titrant versé).

Résultats des différents dosages à différentes dates (on a toujours prélevé 10 mL dans le mélange réactionnel)


T (min)	0	3	6	O)	12	16	20	30	40	50	60
Veq (mL)	0	2,5	5	7	8,5	10,5	11,5	14	15,5	16	16,5
nI ₂ dosé	0										
nI ₂ réel	0										

On a effectué le titrage sur un volume prélevé de 10 mL du mélange réactionnel, alors que celui-ci fait au total V=200 mL.

Dans ce cas le nombre de moles réels en I_2 dans le mélange fait n I_2 réel=.....

* D du																														ac	tio	on	à	c	elle
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 				۰	
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 				•	
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 				۰	
	 	 	 	 	 	 		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 				•	
	 	 	 	 ٠.	 	 	٠.	 	 	 	 	 	 ٠.	 				•																	
	 	 	 	 ٠.	 	 	٠.	 	 	 	 	 	 ٠.	 				•																	

* Tracer la courbe d'évolution x=f(t) ou n $_{I_2}$ réel=f(t) (x= n $_{I_2}$ réel)

II°) Vitesse volumique de réaction:

1°) <u>Définition</u>:

La vitesse volumique de réaction est définie par :

$$\mathbf{v} = \frac{1}{V} \frac{dx}{dt}$$

v= vitesse volumique de réaction en mol.m⁻³.s⁻¹

dx= variation de l'avancement en mole

dt durée de la variation en seconde

V= volume total du mélange réactionnel en m³

Remarque : Par commodité on utilise aussi pour v les mol.L⁻¹.s⁻¹ et mol.L⁻¹.min⁻¹

Sur le graphe $x=f(t)$,	$\frac{dx}{dt}$ représente la dérivée de l'avancement par rapport au temps. On obtient $\frac{dx}{dt}$ en considérar
e coefficient directeu	ars de la tangente à un instant t donné.
* Calculer la vitesse v mol.L ⁻¹ .min ⁻¹	volumique de réaction à t=3min, 16 min et 40 minutes (exprimer ces dernières en mol.m ⁻³ .s ⁻¹ et e
• • • • • • • • • • • • • • • • • • • •	
* Comment évolue la	vitesse v au cours du temps (Justifier) :
Comment evolue iu	ricose v da codis da temps (Jasaner) .
• • • • • • • • • • • • • • • • • • • •	
emps de demi-réacti	
emps de demi-réaction : e temps de demi-réaction is it is la réaction est totale	on (noté $t_{1/2}$): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final x $t_{1/2}$ est la durée pour que x parvienne à la $\frac{1}{2}$ de sa valeur maximal : quand $x = x_{max}/2$ alors $t = t_{1/2}$.
e temps de demi-réaction : e temps de demi-réaction est totale	on (noté t _{1/2}) : ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final x
Temps de demi-réaction : e temps de demi-réaction et totale Remarque : x _{max} est la c	on (noté $t_{1/2}$): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final $t_{1/2}$ est la durée pour que x parvienne à la $t_{1/2}$ de sa valeur maximal : quand $x=x_{max}/2$ alors $t=t_{1/2}$.
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . Tele x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . Tele x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . Tele x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . Tele x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction : e temps de demi-réaction et temps de demi-réaction est totale Remarque : x _{max} est la coordinate de la coordinate d	on (noté $t_{1/2}$): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final x : $t_{1/2}$ est la durée pour que x parvienne à la $\frac{1}{2}$ de sa valeur maximal : quand $x = x_{max}/2$ alors $t = t_{1/2}$. quantité de matière de réactif limitant .
Temps de demi-réaction : e temps de demi-réaction et temps de demi-réaction est totale Remarque : x _{max} est la coordinate de la coordinate d	ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . The x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
Temps de demi-réaction e temps de demi-réaction i la réaction est totale Remarque : x _{max} est la co D' Exemple : Calculer	ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . The x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
e temps de demi-réaction : e temps de demi-réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} quantité de matière de réactif limitant . · le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
e temps de demi-réaction : e temps de demi-réaction est totale Remarque : x _{max} est la co	ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} . quantité de matière de réactif limitant . Tel ex _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
e temps de demi-réaction : e temps de demi-réaction est totale Remarque : x _{max} est la co	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} quantité de matière de réactif limitant . · le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :
e temps de demi-réaction : e temps de demi-réaction est totale Remarque : x _{max} est la comple : Calculer	on (noté t _{1/2}): ion est la durée au bout de laquelle l'avancement x est égale à la moitié de l'avancement final t _{1/2} est la durée pour que x parvienne à la ½ de sa valeur maximal : quand x=x _{max} /2 alors t=t _{1/2} quantité de matière de réactif limitant . · le x _{max} pour la réaction étudiée puis en déduire graphiquement t ½ :