
2 GT6 TP 11 A.O. EN RÉGIME LINÉAIRE

L'amplificateur opérationnel utilisé est un TL 081 alimenté par une tension symétrique + 15 V, - 15 V.

L'amplificateur opérationnel est **en régime linéaire** quand il y a un dipôle linéaire (par exemple une résistance) entre la sortie S et l'entrée inverseuse e .

I. Montage amplificateur inverseur :

1. Montage:

Brancher l'interface CASSY pour visualiser la tension d'entrée V_e sur le canal B et la tension de sortie V_s sur le canal C.

2. Etude expérimentale :

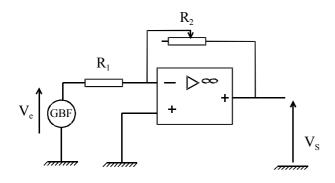
Lancer le programme d'acquisition CTS (Mesures de deux tensions). Faire varier V_e de -10 V à +10 V par pas de 1 V et enregistrer les mesures.

Tracer la courbe $V_s = f(V_e)$ dans EXCEL. Présentation habituelle (pas de légende, titre du graphique : $V_s = f(V_e)$, axe $x : V_e$ (V), axe $Y : V_s$ (V), titre des axes au bout des axes et horizontaux, faire tracer un trait automatique pour relier les points.

Nouveauté : il faut tracer la courbe de tendance mais seulement pour la partie où $V_{\rm S}$ est proportionnelle à $V_{\rm e}$.

Pour afficher la courbe de tendance pour une partie de la courbe obtenue, il faut sélectionner les valeurs dans le tableau > édition : copier > sélectionner le graphique > édition : collage spécial > dans la boite de dialogue, valider : nouvelle série, catégorie (valeurs X) dans la 1^{ère} colonne, valeurs Y en colonnes, puis OK.

Les points apparaissent sur le graphique. Il faut les les sélectionner et insérer la courbe de tendance, type linéaire, option : afficher l'équation (il faut mettre la courbe de tendance en trait fin). Remplacer x par V_c et y par V_s et supprimer l'ordonnée à l'origine (qui est nulle).


Quelle est la valeur du gain en amplification du montage $G = \frac{V_S}{V_e}$ quand l'A.O. est en régime linéaire.

Comparer avec la valeur théorique
$$G = \frac{V_S}{V_e} = -\frac{R_2}{R_1}$$
.

Pourquoi la tension V_S n'est elle pas toujours proportionnelle à la tension V_e?

Faire le montage dans Crocodile Clips. Régler V_e à 2 V. Coller dans EXCEL (dans mesures, commande de l'appareil de mesure, il faut désactiver l'option : mesurer les valeurs efficaces).

3. Application: amplification d'une tension alternative sinusoïdale:

$$R_1 = 1 k\Omega$$

 R_2 : potentiomètre 10 $k\Omega$

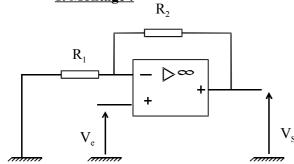
$$V_e$$
 = tension fournie par le GBF.
fréquence f = 1 kHz signal

Brancher l'oscilloscope pour visualiser V_e sur la voie Ch_1 et V_s sur la voie Ch_2 .

En utilisant le bouton amplitude du GBF, régler la valeur maximale de Ve à 3 V.

Augmenter la valeur de R_2 pour avoir la valeur maximale de $V_S = 6 \text{ V}$.

Recopier V_e et V_s.


Quel est la gain du montage.

Augmenter R2 jusqu'à ce que l'A.O. sature.

Recopier V_e et V_s.

II. Montage amplificateur non-inverseur:

1. Montage:

$$R_1 = 2.2 \text{ k}\Omega$$

 $R_2 = 4.7 \text{ k}\Omega$.

V_e: tension continue réglable de -10 V à +10 V.

Brancher l'interface CASSY pour visualiser V_e sur le canal B et V_S sur le canal C.

Faire vérifier le montage

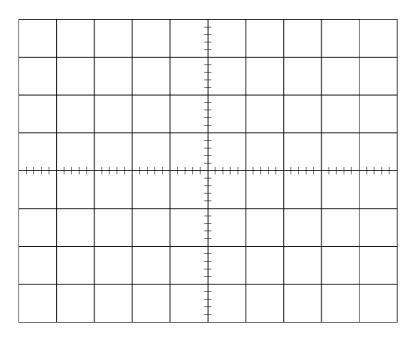
2. Mesures:

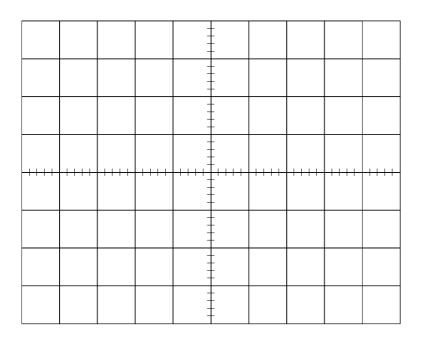
Lancer le programme d'acquisition CTS (Mesures de deux tensions).

Faire varier V_e de -10 V à +10 V par pas de 1 V et enregistrer les mesures.

Tracer la courbe $V_S = f(V_e)$ dans EXCEL. Présentation habituelle (faire tracer un trait automatique pour relier les points).

Faire apparaître la courbe de tendance et son équation mais seulement pour la partie où V_s est proportionnelle à V_e (régime linéaire).


Quelle est la valeur du gain en amplification du montage $G = \frac{V_S}{V_e}$ quand l'A.O. est en régime linéaire.


2

Comparer avec la valeur théorique $G = \frac{R_2 + R_1}{R_1}$.

Pourquoi la formule n'est-elle pas vérifiée par les mesures pour toutes les valeurs de $V_{\rm e}$? Pourquoi est-ce que ce montage s'appelle un montage amplificateur non inverseur?

Faire le montage dans Crocodile Clips. Régler V_e à -2 V. Mettre un voltmètre pour mesurer la tension de sortie V_s . Coller dans le compte-rendu.

