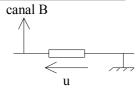
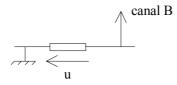
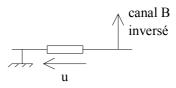
2 GT6 MPI TP 4 TRACÉ DE LA CARACTÉRISTIQUE D'UNE DIODE

 \underline{BUT} : Tracer les caractéristiques i = f(u) d'une diode sans utiliser d'ampèremètre et de voltmètre et sans entrer les valeurs au clavier. Les mesures seront faites directement par l'ordinateur. Les résultats seront exploités graphiquement dans EXCEL.

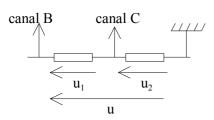

I. Utilisation de l'interface CASSY:


L'interface CASSY comporte quatre entrées notées A, B, C, D. Sur l'entrée A (notée aussi canal A), on mesure la tension entre la borne A et la masse (représentée par \bot). La masse est commune pour les quatre entrées. Il suffit de la brancher une seule fois.

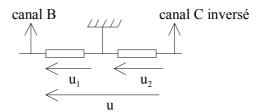

Les tensions maximales sur les entrées A et D sont 10 V.

Les tensions maximales sur les entrées B et C sont 30 V.

Mesure d'une tension :

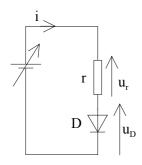

Tension u mesurée sur le canal B

Tension -u mesurée sur le canal B


Tension u mesurée sur le canal B

Mesure de deux tensions :

Il faut utiliser le canal B, le canal C et une masse (commune aux deux tensions).


mesure de la tension u sur le canal B et de la tension u_2 sur le canal C

mesure de la tension u_1 sur le canal B et de la tension u_2 sur le canal C inversé.

II. Saisie des mesures avec le programme MESURE DE DEUX TENSIONS :

1. Montage:

Pour tracer $i = f(u_D)$, il faut mesurer u_D et i.

La tension $u_{\scriptscriptstyle D}$ est mesurée sur le canal B. La tension $u_{\scriptscriptstyle r}$ est mesurée sur le canal C.

Représenter sur le montage le canal B, le canal C et la masse.

L'interface CASSY est un voltmètre. Pour mesurer une intensité, il faut mesurer la tension u_r aux bornes d'une résistance connue r.

La loi d'Ohm permet d'écrire $u_r = ri \Rightarrow i = u_r/r$

Sur le canal C, l'interface CASSY mesure la tension u_r.

2. Mesures :

Calculer la résistance r pour limiter l'intensité du courant à 90 mA quand la tension aux bornes du générateur est $u_G = 10 \text{ V}$. La tension u_D aux bornes de la diode est $u_D = 1 \text{ V}$. Réaliser le montage. Faire vérifier le montage.

Lancer le programme Mesure de deux tensions

Menu: Mesures > Options. Valider les bonnes options.

Menu : Mesures > Saisie. \dashv « entrée » pour enregistrer un couple de valeurs u et u_r .

On peut prendre autant de valeurs que l'on veut dans n'importe quel ordre. Elles sont classées automatiquement.

Faire les mesures suivantes :

u _r (V)						0,05	0.1	0.2	0.3	0.6	8.0	1	1.2	2	3	5	7	9
$u_D(V)$	-3	-2	-1	0	0,3													

Pour terminer, cliquer sur OK et le tableau de mesures s'affiche (on peut toujours en ajouter ou en supprimer en retournant dans le menu Mesures > saisie).

Menu : Fichier > copier \rightarrow p.p. (presse-papier de Windows).

Ensuite, <u>réduire</u> le programme Mesure de deux tensions (sans le fermer).

III. Exploitation dans Excel:

Lancer EXCEL et Menu > Edition > Coller.

La 1^{ère} colonne contient les valeurs de u en V et la 2^{ième} colonne les valeurs de u_r en V.

Ajouter les titres u (V) et u_r (V) au dessus des valeurs.

Créer une 3^{ième} colonne contenant les valeurs de i (A) (utiliser une formule).

Pour tracer i = f(u), il faut que la colonne contenant les valeurs de u soit **à gauche** de la colonne contenant les valeurs de i.

Sélectionner les deux colonnes **sans les titres** et utiliser l'assistant graphique (utiliser le texte du TP 3 pour tracer le graphique).

Titre du graphique: i = f(u), titre de l'axe X : u(V), titre de l'axe Y : i(A), supprimer le fond gris, les marques sont des croix, faire tracer un trait automatique en gras, **ne pas mettre de courbe de tendance.**

Déterminer la tension seuil u_s de la diode (c'est la valeur de la tension à partir de laquelle la diode conduit).

Comment se comporte la diode quand elle conduit ? Comment se comporte la diode quand elle est bloquée ?