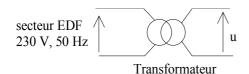
2 GT6 MPI TP 5 DIODE : APPLICATION REDRESSEMENT

But: Utiliser une diode pour redresser une tension alternative sinusoïdale.


I. Fonctionnement d'une diode :

Représenter le schéma équivalent d'un diode polarisée dans le sens direct. Représenter le schéma équivalent d'un diode polarisée dans le sens inverse.

II. Tension alternative sinusoïdale:

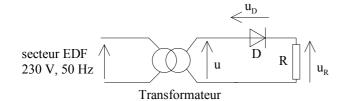
C'est la tension délivrée par le secteur EDF.

Pour des raisons de sécurité, on visualise la tension de sortie u d'un transformateur.

Brancher l'oscilloscope pour visualiser la tension u sur la voie CH_1

Relever la tension u(t).

Questions:


Mesurer la période T (en s) et la valeur maximale Û (en V) de la tension u(t).

Calculer la fréquence f (en Hz) f = 1/T et la valeur efficace U = $\frac{\hat{U}}{\sqrt{2}}$

Mesurer la tension efficace U avec le voltmètre en AC. Conclusion.

III. Redressement monoalternance:

1. Montage:

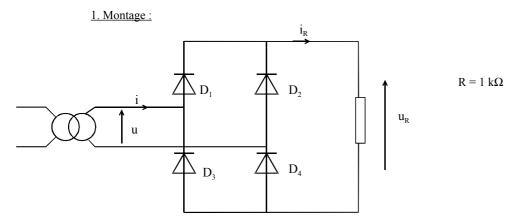
D : Diode de redressement 1N4007 R = 1 k Ω

Brancher l'oscilloscope pour visualiser simultanément les tensions $u_D(t)$ (voie CH_1)et $u_R(t)$ (voie CH_2)

Faire vérifier le montage avant de mettre sous tension.

Relever les courbes $u_D(t)$ et $u_R(t)$.

2. Questions:


Écrire la relation entre u, u_R et u_D .

Quand la tension u >0, est ce que la diode conduit ? Quelle est la valeur de la tension u_D ? Écrire la relation entre u et u_R . Représenter le schéma équivalent du montage.

Quand la tension u < 0, est ce que la diode conduit ? Quelle est la valeur de l'intensité i ? Quelle est la valeur de la tension u_R ? Écrire la relation entre u et u_D . Représenter le schéma équivalent du montage.

IV. Redressement doublealternance:

Débrancher le transformateur.

Brancher l'oscilloscope pour visualiser la tension $u_R(t)$.

Faire vérifier le montage avant de mettre sous tension.

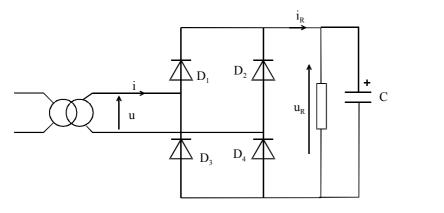
2. Questions:

Relever la tension $u_R(t)$.

Quand u > 0, quelles sont les diodes qui conduisent ? Représenter le schéma équivalent au montage en fléchant le sens de passage du courant.

Écrire la relation entre u et u_R.

Quand u < 0, quelles sont les diodes qui conduisent ? Représenter le schéma équivalent au montage en fléchant le sens de passage du courant.


Écrire la relation entre u et u_R.

V. Filtrage de la tension redressée pour obtenir une tension continue :

Pour filtrer la tension u_R(t) redressée, on utilise un condensateur.

Un condensateur est caractérisé par sa capacité C en F (Farad). On utilise souvent un sous multiple : μF (microfarad : $1 \mu F = 10^{-6} F$).

Débrancher le transformateur.

 $C = 100 \mu F$

 $R = 1 k\Omega$

Attention, le condensateur est polarisé.

Brancher l'oscilloscope pour visualiser la tension u_R.

Faire vérifier le montage avant de mettre sous tension.

Relever la tension u_R.

Remplacer le condensateur par un condensateur de capacité C = 470 μF puis par un condensateur de capacité C = 1000 μF . Conclusion.

Que faut-il pour réaliser une tension continue basse tension à partir du secteur EDF?

TP 5 (suite) UTILISATION DE L'ORDINATEUR COMME OSCILLOSCOPE

En utilisant l'interface CASSY (canal A, canal B et la masse) et le logiciel **Synchronie**, on peut transformer l'ordinateur en oscilloscope.

Avec l'interface CASSY, les tensions sont limitées à 30 V On ne peut pas utiliser le transformateur (la tension maximale dépasse 30 V). On utilise comme générateur un GBF (générateur basse fréquence).

I. Montage:

Borne rouge

u GBF Borne noire

GBF (Function générator)

Réglages : Function : V Range : 100

Att : le bouton ne doit pas être enfoncé

Amplitude : bouton au milieu

Les boutons sym, TTL et DC offset doivent être enfoncés.

Régler f = 100 Hz avec le bouton Frequency.

II. Utilisation du logiciel Synchronie :

Lancer Synchronie

Paramètres → entrées A/D

Entrée n° A → désactiver fenêtre 1

→ configuration : mode : voie inective.

 \rightarrow entrée n°B \rightarrow Définition

 \rightarrow nom : u \rightarrow unité : V

→ valider fenêtre 1

 \rightarrow configuration : mode : automatique

 $\to \mathrm{OK}$

Exécuter Acquérir par carte

La courbe apparaît.

Amélioration pour que la courbe parte de 0 en augmentant et pour faire apparaître une seule période à l'écran.

Paramètres → Acquisition : Réglages : points 200

Durée: échantillon: 200 us.

(l'ordinateur acquiert 200 points de mesure et l'intervalle entre deux points est 200

μs).

totale : 40 ms (200pointsx200 μ s = 40 ms)

Calculer la période T et modifier le nombre de points et/ou l'échantillon pour que la durée totale soit égale à la période.

Paramètres → Acquisition : Déclenchement : voie : entrée B

niveau 0

sens: croissant.

La courbe va démarrer quand la tension passe par 0 en augmentant.

Pour faire les mesures. Outils→ réticule : cliquer bouton gauche. les coordonnées x et y du point sélectionné apparaissent.

Mesurer l'amplitude Û et la période T de la tension.