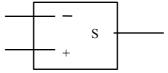
<u>L'amplificateur opérationnel en régime linéaire</u> 39 n°11 (1° partie)

<u>Introduction</u>: Le microprocesseur Pentium équipe la plupart des ordinateurs de type PC de la génération actuelle. A l'intérieur de ces microprocesseurs il y a des amplificateurs opérationnels (AOP).

I°)	Présentation	de l'am	<u>plificateur</u>	opérationnel	
Mo	ontages :				

- Association d'un microphone à un haut parleur -


- Association d'un microphone à un HP par l'intermédiaire d'un ampli opérationnel -

<u>Ooser various.</u>

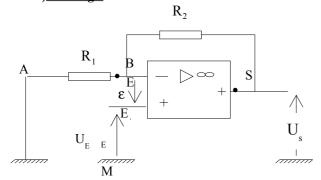
Conclusion: Un des intérêts de l'ampli-op est d'...... la tension d'un signal d'entrée.

<u>Descriptif de l'ampli-op</u>: Un amplificateur opérationnel est un assemblage de composants dans un circuit de petite dimension (des dizaines de transistor, de diodes et de résistances associées sur une puce de silicium). Il a broches présenté dans un boîtier en plastique. Sur ces broches seulement 3 apparaissent sur la représentation symbolique.

Symbole de l'ampli-op

Un A.O peut fonctionner de deux façons différentes : - soit en régime linéaire - soit en régime saturé

II°) Un ampli-op doit être alimenté:


Pour fonctionner, l' A.O.P doit être alimenté par <u>deux sources de tension continu</u> + 15 V et – 15 V. Ces tensions sont obtenues par rapport à la masse qui est le potentiel de référence $(V_M =)$

Attention : Ce sont les premières connexions à effectuer et les dernières à supprimer sous peine de détérioration de l'ampli-op.

III°) Montage amplificateur non inverseur: L'A.O fonctionne ici en régime linéaire.

Dans ce cas : i⁺ (courant à la borne + de l'ampli)=i⁻(courant à la borne – de l'ampli)=0 V_{E-} (potentiel à la borne d'entrée -)=V_{E+} (potentiel à la borne d'entrée +)

1°) Montage:

 $R_1 = 1 k\Omega$ $R_2 = 10 k\Omega$

 $U_{\text{E}} \colon \text{tension d'entrée continue réglable de - 2 V à} \\ + 2V \ (0V \text{ et sortie} \quad \text{Sym de l'alimentation})$

- * Brancher l'interface CASSY pour visualiser : (représenter ces branchements sur le compte rendu).
 - la tension d'entrée U_E sur le canal B
 - la tension de sortie U_s sur le canal C.

2°) Expérience:

- * Lancer le programme d'acquisition CTS (mesure de 2 tensions) (Vérifier si les options sont correctes).
- * Faire varier U_E de -2 V à + 2 V (de 0,2 V en 0,2 V) et enregistrer les mesures.
- * Copier.
- * Lancer Excel. Coller.
- * Tracer la courbe $U_S = f(U_E)$ en dessous de votre tableau
- * Insérer la courbe de tendance pour la partie linéaire seulement et afficher l'équation de la droite obtenue.

Remarque: Pour afficher la courbe de tendance pour une partie de la courbe obtenue, il faut sélectionner les valeurs dans le tableau > édition : copier > sélectionner le graphique > édition : collage spécial > dans la boite de dialogue, valider : nouvelle série, catégorie (valeurs X) dans la 1ère colonne, valeurs Y en colonnes. Sélectionner ces points sur le graphique et insérer la courbe de tendance avec son équation.

Ne pas imprimer.

Enregistrer votre travail.

Vous venez de tracer la caractéristique de transfert U_s=f(U_e) pour le domaine linéaire de l'ampli-op.

- 1°) Calculer le facteur d'amplification A=Us/Ue.
- 2°) Que vaut U_{smax} en régime de saturation ?
- 3°) Comparer cette valeur avec la tension d'alimentation de l'ampli-op. Cela vous étonne t il ? (Si non pourquoi ?)

Remplacer R_2 par 4,7 k Ω .

- * Refaire le même travail que ci-dessus (U_E toujours de -4 V à + 4 V de 0,5 V en 0,5 V)
- * Copier les valeurs dans la feuille 1 (à coté du tableau précédent), laisser deux colonnes entre les tableaux.
- * Tracer la courbe $U_S = f(U_E)$ sur le même graphique que ci-dessus.

Remarque: pour que votre courbe soit dans le graphique précédent, il faut sélectionner les valeurs de votre nouveau tableau > édition : copier > sélectionner le graphique précédent > édition : collage spécial > dans la boite de dialogue, valider : nouvelle série, catégorie (valeurs X) dans la 1ère colonne, valeurs Y en colonnes.

* Comme précédemment, insérer la courbe de tendance pour la partie linéaire seulement et afficher l'équation obtenue.

Enregistrer votre travail, faire la mise en page et imprimer les tableaux et les graphiques.

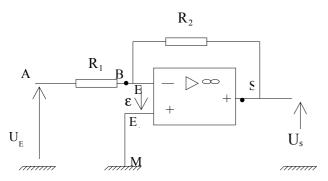
- 1°) Calculer le facteur d'amplification ou gain A=Us/Ue.
- 2°) Comment à évoluer ce facteur?

3°) Etude théorique:

Rappel:

Notion de maille: On appelle maille, une boucle que l'on peut décrire dans un circuit électrique. Repérer, sur votre schéma de montage, la boucle MSBAM (la passer en fluo).

Loi des mailles : Quand on décrit une maille, en effectuant un tour complet (avec un sens arbitraire choisi), la somme algébrique des tensions rencontrées est égale à zéro (avec les flèches des tensions toujours dans le même sens).


Gain de l'ampli-op:

1°) Quelle est, dans ce montage, la tension entre les deux entrées E⁺ et E⁻ (regarder les informations au début du_III°). Prendre comme sens positif du courant dans les deux résistors, celui qui va gauche à droite.

- 2°) Appliquer la loi des nœuds au point B pour obtenir une relation entre i_1 et i_2 .
- 3°) Appliquer la loi des mailles à ME^+EBAM pour obtenir une expression de U_e .
- 4°) Appliquer la loi des mailles à MSBAM pour obtenir une expression de U_s .
- 5°) En déduire l'expression littérale du gain (A=Us/Ue), en fonction de R_1 et R_2 .
- 6°) Faites l'application numérique pour R_2 =10 k Ω et R_2 = 5 k Ω .
- 7°) Dans les 2 tableaux de votre feuille EXCEL remplir une colonne qui donnera U_s calculée (se servir de la question précédente).
- 8°) Comparer U_s mesurée et U_s calculée dans le domaine linéaire.
- 9°) Quelle est la particularité du régime de saturation.

IV.°) Montage amplificateur inverseur:

1°) Montage:

$$R_1 = 1 \text{ k}\Omega$$
$$R_2 = 3.9 \text{ k}\Omega$$

 U_E : tension continue réglable de - 7 V à + 7 V.

* Brancher l'interface CASSY pour visualiser U_E sur le canal B et U_S sur le canal C.

2°) Expérience:

Refaire le même travail que précédemment pour $R_2 = 4.7 \text{ k}\Omega$ (nouvelle feuille EXCEL). **Imprimer les tableaux et les graphiques.**

3°) Etude théorique:

- 1°) Calculer le gain de l'ampli-op en vous inspirant de ce qui a été fait auparavant (le courant va toujours de gauche à droite et les propriétés de l'ampli-op restent inchangées).
- 2°) Le terme montage inverseur est-il adapté ? Quel serait le vocabulaire adéquat ?